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Abstract. The dynamics of the entanglement for a solid polariton system is investigated. The polariton
system is a photon-phonon complex and its time-dependent characteristic function in the Wigner repre-
sentation for the system is obtained analytically. It is found that when the photon field is initially prepared
in the squeezed vacuum state, and the phonon in the thermal state, the polariton system can evolve into a
two-mode Gaussian mixed state. The entanglement between photon and phonon turns out to be apparently
dependent on the squeezing parameter and exhibits a critical behavior with respect to the temperature.

PACS. 03.67.Mn Entanglement production, characterization and manipulation – -71.36+c Polaritons
(including photon-phonon and photon-magnon interactions)

1 Introduction

One of the main tasks of quantum information theory is
to quantify the entanglement and the quantum correla-
tions that quantum states possess. Recently a great deal of
attention has been devoted to quantum information pro-
cessing with canonical continuous variables, and various
protocols for quantum communication and computation
have been developed based on continuous variables [1].
Among all the quantum states in continuous variable sys-
tems, Gaussian states play a central role in the theory of
entanglement for continuous variable systems due to the
fact that experimentally they are relatively easy to create
and arise naturally as states of the light field of laser [2] or
in atomic ensembles interacting with light [3]. In spite of
the fact that Gaussian states live in infinite-dimensional
bosonic Fock space, all of their physical features are indeed
captured by the so-called covariance matrix. From this
finite-dimensional matrix one is able to extract straight-
forwardly various measures of entanglement such as en-
tanglement of formation (EOF) for two-mode symmetric
Gaussian states [4], lower bounds on the entanglement of
asymmetric Gaussian states [5], negativity and logarith-
mic negativity (LN) [6,7]. This is the most popular one
since it is comparatively easy to calculate for all two-mode
Gaussian states. With this aim in mind it is often useful
to cast the covariance matrix in standard form. This is
possible via local unitary operations which do not change
the entanglement of the state [8,9].
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On the other hand, the study of the behavior of po-
lariton systems has long been an active research area in
condensed matter physics, especially in semiconductor op-
tical microcavities. Polaritons are collective excitations of
phonons or excitons of a crystal generated from a coherent
linear interaction between a polar material mode and cav-
ity field. The science of polaritons through semiconductor
microcavities has made progress in experiments including
squeezed polariton generation using polariton degenerate
four-wave mixing [10] and probing of polariton quantum
correlations [11]. A scheme for the generation of branch-
entangled pairs of microcavity polaritons [12] has been
proposed. Polariton condensation is also a subject of great
interest [13]. The possibility of using a solid medium to
store few-photon laser pulses has been investigated [14],
where a theoretical analysis of storing quantum informa-
tion in solids using a polariton formalism was carried out.
Such a scheme would be well worth considering, as solids
have a number of advantages over gases and are easier to
prepare and store. Therefore, it is interesting to study en-
tanglement in solid polariton systems. The polariton sys-
tem we consider here is a photon-phonon complex which
results when light falls on a solid-state material and inter-
acts with the vibrating lattice [15,16]. It has been shown
that the phonon and photon subsystem can exhibit in-
teresting nonclassical behavior [17]. The purpose of this
paper is to investigate the entanglement dynamics of the
polariton system by using entanglement measures of con-
tinuous variables, namely the EOF [4] and the LN [6],
respectively. These two measures are directly evaluated
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in accordance with the schemes using the Wigner charac-
teristic function of the coupling system. We compute the
time evolution of the entanglement, starting from an ini-
tial thermal state of the phonon for both zero and finite
temperatures. We show that our system is exactly solv-
able and find that if the cavity field is initially prepared
in a squeezed state and the phonon in a thermal state, the
state of the coupling system can evolve into a two-mode
Gaussian mixed state. The entanglement properties of the
state which change with parameters of the system are ex-
amined in terms of the covariance matrix of the Gaussian
state. The dynamical behavior of the entanglement be-
tween photon and phonon turns out to be apparently de-
pendent on the squeezing parameter and exhibits a critical
behavior with respect to the temperature.

2 A polariton system and its evolution

Polaritons are collective excitations of a crystal generated
from a coherent linear interaction between a polar mate-
rial mode and an electromagnetic field [18]. When light
falls on a solid-state material and interacts with the vi-
brating lattice, a photon-phonon complex which results
in a polariton is formed. Phonons arise as harmonic ex-
citations due to the vibrational modes of the ions in the
polariton system. From a quantum computing point of
view the information is encoded in the phonon degrees
of freedom while the radiation field acts as a medium for
the interaction among the phonons. The purpose of this
paper is to investigate the entanglement properties of the
photon-phonon system. In order to perform some calcu-
lations, we need to specify a quasi-realistic model [19]. In
many situations, a rotating wave approximation for the
optical frequencies is appropriate. However, the trunca-
tion may cause the loss of some correlation contributing
to the entanglement of the system. It has been shown that
the non-rotating terms can enhance the nonclassical be-
havior of the system such as squeezing [21]. Therefore,
the non-rotating wave term a†b† + ab in the Hamiltonian
is preserved. If only linear effects are taken into account,
the Hamiltonian of the simplest possible model involving
one mode of photon field interacting with a single optical
phonon mode is given by [15]

H = ωaa
†a + ωbb

†b + κ(a†b† + ab + a†b + b†a) (1)

where a†(a) is the creation (annihilation) operator for
the photon with frequency ωa, b†(b) denotes the cre-
ation (annihilation) operator for an optical phonon with
phonon frequency ωb, and κ is the phonon-photon
coupling strength. Throughout we employ units with
� = c = kB = 1. Physically, the first and second terms of
Hamiltonian (1) represent the energy spectra of the free
photon field and the free phonon field, respectively, and
the third term describes the interaction between the two
subsystems. In general, the frequency of the phonon and
the coupling strength lie in the optical region. For ex-
ample, the decay time of the transverse optical phonon

polariton has been measured by impulsive stimulated Ra-
man scattering [20] and the frequency of the phonon for
GaP is in infra-red region ∼1013 Hz. For simplicity, we
restrict ourselves to the resonant case, i.e., ωa = ωb = ω.
Using the following unitary transformation of the bosonic
modes

α = A+a − A−a† + A+b − A−b†,

β = −B+a + B−a† + B+b − B−b† (2)

and choosing suitable parameters

A± =
1

2
√

2

[(
ω

ω − 2κ

)1/4

±
(

ω − 2κ

ω

)1/4
]

,

B± = − 1
2
√

2

[(
ω

ω + 2κ

)1/4

±
(

ω + 2κ

ω

)1/4
]

, (3)

the Hamiltonian can be diagonalised as

H = Eαα†α + Eββ†β + E0 (4)

where the operators α and β are new Bose operators
in the polariton system and satisfy the usual commuta-
tion relations [α, β] = 0, [α, α†] = 1 and [β, β†] = 1.
The indices α and β specify the two branches of the en-
ergy spectrum, where the energy Eα and Eβ are given by
Eα =

√
ω2 − 2κω and Eβ =

√
ω2 + 2κω respectively, and

E0 is the ground state energy of the system. The diag-
onalized Hamiltonian (4) means that one has “dressed”
the phonons, and there is no entanglement between the
two polariton branches for an initial separable state of
polariton. However, the interaction between photon and
phonon produces the coherence of their subsystems that
is necessary for entanglement. For convenience, we express
the transformation relation equation (2) in matrix form,
which reads (

α, α†, β, β†)T
= S

(
a, b†, a, b†

)T
(5)

where T represents the transpose of a matrix and

S =




A+ −A− A+ −A−
−A− A+ −A− A+

−B+ B− B+ −B−
B− −B+ −B− B+


 (6)

is a real 4×4 transformation matrix. The time dependent
operators α(t) and β(t) can be easily obtained through
solving their Heisenberg equation of motion, and is ex-
pressed as

(
α(t), α†(t), β(t), β†(t)

)T
=

O(t)
(
α(0), α†(0), β(0), β†(0)

)T
(7)

where O(t) is given by

O(t) =




exp(−iEαt) 0 0 0
0 exp(iEαt) 0 0
0 0 exp(−iEβt) 0
0 0 0 exp(iEβt)


 .

(8)
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Together with the transformation relations equations (5)
and (7), we have

(a(t), a†(t), b(t), b†(t))T =

V (t)(a(0), a†(0), b(0), b†(0))T (9)

where V (t) = S−1O(t)S.
In order to obtain the time-dependent characteristic

function in the Wigner representation for the polariton
system, it is advantageous to make use of the position
and momentum operators

qa =
1√
2
(a† + a), pa = i

1√
2
(a† − a)

qb =
1√
2
(b† + b), pb = i

1√
2
(b† − b) (10)

to rewrite the relation between the boson operators and
the quadrature operators in the form

(qa, pa, qb, pb)T = Q(a, a†, b, b†)T (11)

where Q = 1√
2




1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i


.

Hence, the evolution of (qa(t), pa(t), qb(t), pb(t))T can be
obtained from equations (9) and (10) and reads

(qa(t), pa(t), qb(t), pb(t))T = U(t)(qa, pa, qb, pb)T (12)

where U(t) = QV (t)Q−1.
The Gaussian state is one whose Wigner characteristic

function, defined by [22]

χ(ξa, ξb) = Tr[ρ exp(−ξ∗aa + ξaa† − ξ∗b b + ξbb
†)] (13)

is a Gaussian. The Wigner characteristic function of a
Gaussian system can be written in the following compact
form

χ(ξa, ξb) = exp
[
−1

2
ΛT MΛ

]
(14)

with Λ = [Im(ξa), Re(ξa), Im(ξb), Re(ξb)]T , where Re(Im)
denotes the real (imaginary) part of a function, and M
is the so-called covariance matrix [8]. The characteristic
function can also be written as

χ(ξa, ξb) = Tr
{
ρ exp

[
i
√

2ΛT (qa, pa, qb, pb)T
]}

(15)

and its time evolution can thus be expressed as

χ(ξa, ξb, t) =

Tr{ρ exp
{
i
√

2
[
UT (t)Λ

]T
(qa, pa, qb, pb)T

}
. (16)

It can be seen that the time-dependent characteristic func-
tion χ(ξa, ξb, t) can simply be obtained from χ(ξa, ξb) by
the substitution Λ → UT (t)Λ, and is given by

χ(ξa, ξb, t) = exp
{
−1

2
[UT (t)Λ]T MUT (t)Λ

}
(17)

which directly yields the covariance matrix

M(t) = U(t)MUT (t). (18)

We assume that the photon field is initially in the squeezed
vacuum state

ρa = S(r) |0〉a a 〈0|S†(r) (19)

where S(r) = exp
{
r
[
a2 − (a+)2

]
/2

}
is a squeezed opera-

tor [23] with the real squeezing parameter r which can be
physically understood in the form 〈a†a〉 = sinh2(r), and
the phonon field is initially prepared in the thermal state

ρb =
1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n

|n〉b b〈n| (20)

where |n〉b is the phonon number state and
n̄ = 1/[exp(ω/T )− 1] is the thermal average phonon
number for thermal equilibrium at a certain temperature.
In the case of zero temperature, the phonon is prepared
in its vacuum state |0〉b, which allows us to mainly
investigate the influence of an initial squeezed field on
the entanglement dynamics of the polariton system. At
finite temperature, the density matrix of the system
is the summation of all states with their Boltzmann
weights. Therefore, for very high temperature the density
matrix consists of an almost uniform distribution in
the state space, which leads to the distribution of the
number of the phonon being chaotic and a vanishing of
entanglement. The covariance matrix of the initial state
of system M(t = 0) can be obtained as

M =


cosh(2r)−sinh(2r) 0 0 0
0 cosh(2r)+sinh(2r) 0 0
0 0 2n̄ + 1 0
0 0 0 2n̄ + 1


 .

(21)

The time-dependent covariance matrix of the polariton
system can then be obtained from equations (18) and (21)
as follows

M(t) =
(

A C
CT B

)
(22)

with 2 × 2 matrices

A =
(

f−
1 − 2Re(f−

2 ) −2Im(f−
2 )

−2Im(f−
2 ) f−

1 + 2Re(f−
2 )

)
,

B =
(

f+
1 − 2Re(f+

2 ) −2Im(f+
2 )

−2Im(f+
2 ) f+

1 + 2Re(f+
2 )

)
, (23)

C =
(

Re(f4 − f3) Im(f3 − f4)
Im(f3 + f4) Re(f4 + f3)

)
.

The explicit expression for fi in M(t) is given in the
Appendix. States with a Gaussian Wigner distribution
appear naturally in every quantum system which can be
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described or approximated by a quadratic bosonic Hamil-
tonian. The evolved state of the coupled system is a Gaus-
sian one in the sense that if its Wigner characteristic
function is a Gaussian function of the continuous vari-
ables. The entanglement between two subsystems that are
described in terms of continuous variables has been es-
tablished [4,6], and the continuous variable entanglement
between the vibrational modes of two coupled oscillators
has been recently studied [24] using a general linear mode
transformation. From equation (17), one can see that the
time dependent characteristic function χ(ξa, ξb, t) is ex-
plicitly a Gaussian-style function, which means that an
initial Gaussian state ρ(0) = ρa ⊗ ρb of the polariton sys-
tem will maintain its Gaussian characteristic during the
time evolution, which is consistent with the fact that an
initial Gaussian state will be Gaussian at all times under
the evolution of the Hamiltonians (1). In what follows, we
will see that entanglement properties as a function of time
are determined by the two-mode Gaussian wave packets
for both zero and finite temperature.

3 Continuous variable entanglement

We now discuss the time behavior of the entanglement
of the polariton system and explore the influence of the
squeezing parameter and the temperature on the entangle-
ment. It is well known that for any two-mode covariance
matrix M there exists a local symplectic operation which
takes M to the so-called standard form Ms [8,9]

Ms =




n 0 kx 0
0 n 0 −kp

kx 0 m 0
0 −kp 0 m


 (24)

where kx � kp � 0. Since the transformation that gives
Ms is local, it does not affect the entanglement between
the two subsystems. The correlations n, m, kx and kp are
determined by the four local symplectic invariants

Det A = n2, DetB = m2, |DetC| = kxkp,

DetM = (mn − k2
x)(mn − k2

p). (25)

Therefore, the standard form corresponding to any covari-
ance matrix is unique. States whose standard form fulfills
m = n are said to be symmetric. Separability criteria for a
two-mode Gaussian state have been established [8,9]. The
covariance matrix can be used to derive an analytical ex-
pression of entanglement for the polariton system. In order
to give a quantitative description of how the entanglement
of the Gaussian state changes we consider the following
two cases. We start from different initial preparations i.e.,
zero and finite temperatures, and adopt either the EOF [4]
or the LN [6] approach according to whether their Gaus-
sian states are in symmetric or asymmetric form. These
calculations involve covariance matrices both in standard
and non-standard form.

3.1 Zero temperature situation

Now we consider the zero temperature case and suppose
that the photon field is initially in the squeezed vac-
uum state S(r) |0〉a and the phonon field is in the vac-
uum state |0〉b. As time evolves we get quantum entangle-
ment between the two subsystems due to their interaction.
There is a particular manifestation of nonclassical pho-
ton statistics for the squeezed vacuum state, which can
be generated using a non-degenerate optical parametric
amplifier [24]. Recently, there have been some proposals
connecting the squeezing parameter with the entangle-
ment of atomic states [25]. Our purpose here is to study
what effect squeezing of the radiation field has on the en-
tanglement of the polariton system. From equation (25),
we can directly calculate the standard form of the covari-
ance matrix Ms, whose matrix elements are determined
to be

m = n =
√

(f−
1 )2 − 4

∣∣f−
2

∣∣2 =
√

(f+
1 )2 − 4

∣∣f+
2

∣∣2, (26)

kx = kp =
√
|f3|2 − |f4|2, (27)

where fi are given by the equation in the Appendix with
n̄ set to zero.

Remarkably, the polariton system evolves into a sym-
metric two-mode Gaussian state (invariant under inter-
change of the subsystems). Therefore we can directly eval-
uate the EOF of the system from the covariance matrix
to quantify the entanglement of the system. The EOF is
obtained by Giedke et al. [4] based on the sufficient and
necessary condition for separability of the Gaussian sys-
tem [8]. It is noteworthy that the EOF is a proper measure
of the entanglement between two subsystems and is equal
to the von Neumann entropy if the compound system re-
mains in a pure state. However, unlike the von Neumann
entropy, the EOF still works for mixed states. The EOF
can be calculated by [4]

EF (∆) = c+(∆) ln[c+(∆)] − c−(∆) ln[c−(∆)] (28)

where c±(∆) = [(∆)−1/2 ± (∆)1/2]2/4, and ∆ =
min(1, |n − kx|). The state is entangled only when ∆ < 1.

To gain a better understanding of the entanglement
evolution in the time domain, the EOF as a function of
squeezing parameter r and scaled time ωt is plotted for
κ = 0.3ω and ω = 10 in Figure 1. It can be seen that
at any given time, as the squeezing parameter of the cav-
ity field increases, the entanglement increases monotoni-
cally. For a given squeezing parameter, the entanglement
exhibits periodic behavior with time. The EOF oscillates
with the period given by ωt ∼ 4.99 and shows the double
peak structure within one main period. It reaches its max-
imum at the time points ωt ∼ 1.27n with n = 1, 3, 5, ...
There is a useful connection between nonclassicality and
inseparability. The larger the squeezing degree of the ini-
tial field, the stronger the entanglement at a certain time.
The change of the squeezing degree has an apparent ef-
fect on the entanglement. In other words, the nonclassical
property of the initial photon field contributes to the en-
tanglement generation in the polariton system. In fact,



P. Chang et al.: Entanglement dynamics for a solid polariton system at zero and finite temperatures 375

Fig. 1. EOF as a function of squeezing parameter r and scaled
time ωt for κ = 0.3ω and ω = 10. one can see EOF increases
monotonically with increasing squeezing parameter for a given
time.

Kraus et al. [26] have previously proved that in order to
create as much entanglement as possible it is more effi-
cient to squeeze the state locally first before commencing
the interaction.

3.2 Finite temperature situation

We now focus on the case of finite temperature in which
the phonon modes are in the thermal state given by equa-
tion (20), and investigate the influence of the tempera-
ture on the entanglement evolution. The results will be
compared with the zero temperature case. Suppose the
interaction between the phonons and the photons begins
at t = 0. Initially the phonons are in the thermal state
where the density matrix is given by equation (20) and
the photons are in the squeezed state. We will see in the
following that the state of the polariton system can evolve
into an asymmetric Gaussian state where the EOF fails to
quantify the entanglement. Therefore we use the LN [6],
which is the most popular solution due to the fact that it is
comparatively easy to calculate for all two mode Gaussian
states. In the special instance of the symmetric two-mode
Gaussian state, the EOF provides the same characteriza-
tion of entanglement and is equivalent to the LN. It has
been shown [27] that for any given covariance matrix the
entanglement is lower bounded by that of a Gaussian state
if it is measured in an appropriate way. When applying
LN to a Gaussian approximation of a non-Gaussian state
it can lead to an overestimation of the entanglement.

The LN is defined as EN (ρ) = log2 ||ρT ||1, where ρT

is the partial transpose of the density matrix ρ of the sys-
tem, and ||ρT ||1 ≡ tr

∣∣ρT
∣∣ denotes the trace norm i.e.,

the sum of the absolute values of ρT [28]. The concept of
the negativity is based on the fact that a non-entangled
state has necessarily a positive partial transpose according
to the well-known peres-Horodecki criterion [29]. For all

bipartite Gaussian states, fortunately, a positive partial
transpose is also a sufficient condition [9]. The negativity
essentially measures the degree to which ρT fails to be
positive. Moreover, the LN determines upper bounds on
the teleportation capacity and the entanglement of distil-
lation [6]. The trace norm of the partially transposed den-
sity matrix can be computed from the so-called symplectic
eigenvalues of the partial transpose of M . The symplectic
eigenvalues encode essential information about the Gaus-
sian state and provide powerful, simple ways to express
its fundamental properties. The symplectic eigenvalues of
the partial transposed matrix of the covariance matrix M
can be found in terms of the following characteristic equa-
tion [6]

λ4 − (detA + detB − 2 detC)λ2 + detM = 0 (29)

and the two non-negative values are given by

λ± =
1√
2
{g1 − 2g2 + g3 ± [(g1 − 2g2 + g3)2

−4(g2
2 + g1g3 + |f3||f4|g′1g′3 + g4(g′2)

2)]
1
2 } 1

2 (30)

where

g1 =
1
4
(f−

1 )2 − |f−
2 |2, g′1 =

1
2
f−
1 − |f−

2 |,

g2 =
1
4
(|f4|2 − |f3|2), g′2 =

1
2
(|f4| − |f3|),

g3 =
1
4
(f+

1 )2 − |f+
2 |2, g′3 =

1
2
f+
1 − |f+

2 |,

g4 =
1
2
(f−

1 f+
1 + |f−

2 ||f+
2 |). (31)

It can easily be verified that the symplectic eigenvalue al-
ways satisfies λ+ > 1 at any parameter condition and is
not important for establishing the nonseparability of the
state [6]. The symplectic eigenvalue λ− can satisfy λ− < 1
no matter what values the parameters take for the system
and thus it is important to determine the nonseparability
of the state. Since the state is Gaussian, it is completely
characterized by the covariance matrix, and hence its de-
gree of entanglement can be quantified by means of the
LN [6]

EN = max [− log2 λ−, 0] . (32)

It is easy to see that EN is a decreasing function of
the smallest partially transposed symplectic eigenvalue
λ−. The symplectic eigenvalue completely quantifies the
quantum entanglement of the two-mode Gaussian state.
Furthermore, it turns out that the EOF [4] is also a mono-
tonically deceasing function of λ−, thus providing a quan-
tification of the entanglement of symmetric states equiv-
alent to the one provided by the negativities. The above
expression of the entanglement given in equation (32) is
not accessible by experiment. Fortunately, an experimen-
tally reliable estimate [30] of continuous variable entan-
glement of a two-mode Gaussian state has been proposed.
It is shown that the entanglement of states can be related
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Fig. 2. The LN as a function of temperature T and scaled
time ωt for κ = 0.3ω, ω = 10 and (a) r = 0.5; (b) r = 1.5.

to total and partial purities of the state, which can be
measured even without homodyning [31].

In Figure 2, the LN as a function of the temperature T
and the scaled time ωt are plotted with k = 0.3ω, ω = 10
for two different squeezing parameters, i.e., (a) r = 0.5;
(b) r = 1.5.

The thermal phonon field is a highly chaotic field about
which we have minimal information. The two subsystems
are entangled due to their interaction. The entanglement
can reduce the photon system to a mixed state when
the phonon system variables are traced over. So we know
that the mutual information between the two subsystems
should become non-zero. It is shown in Figure 2 that the
LN EN decreases monotonically with increasing temper-
ature T until it reaches a threshold value at which the
entanglement vanishes. For different evolution times there
exist different threshold temperatures.

In order to investigate explicitly the effect of the tem-
perature on the entanglement, we consider the LN of the
evolved system at a fixed time. One can see that the

more the temperature rises, the more the entanglement
decreases. In fact, the thermal fluctuations at high tem-
perature always suppress the entanglement of the coupling
system, namely, the LN is a decreasing function of the
temperature. It is natural to expect that there exists a
threshold temperature at which the LN becomes zero. By
comparing Figure 2a with Figure 2b, one can see that the
entanglement depends apparently on the squeezing degree.
For a fixed temperature, similar to the zero temperature
case, the entanglement increases with the increase of the
squeezing parameter r. The threshold temperature is sen-
sitive to the squeezing parameter r and converges quickly
as it decreases. The larger the squeezing parameter r of
the photon field, the higher the threshold temperature.
This variation of the entanglement with temperature can
be also seen for other times.

4 Conclusion and discussion

In conclusion, we have investigated the dynamics of en-
tanglement in a polariton system with the phonon ini-
tially prepared in a thermal state and a photon field in
a squeezed vacuum state. The time-dependent character-
istic function for the system is solved analytically. It is
found that the system evolves into a two-mode Gaussian
mixed state, in particular a symmetric one when the tem-
perature of the initial phonon state takes a zero value. The
dynamical behavior of the entanglement between photon
and phonon depends apparently on the squeezing degree
r of the initial photon state and the temperature. The en-
tanglement increases with increasing squeezing parameter
at a fixed temperature, in other words, the nonclassical
property of the initial photon field contributes to the en-
tanglement generation. The entanglement at a given time
shows monotonic behavior with respect to the tempera-
ture and vanishes when the temperature increases beyond
the threshold value. In addition, the threshold value in-
creases with the increase of the squeezing degree r.

Entanglement plays a key role in quantum information
processing. However, due to decoherence, it is very difficult
to generate and maintain an entangled pure state suitable
for efficient quantum information processing. Practically,
when the dissipation of photon and phonon modes is in-
cluded, decoherence actually constitutes a serious imped-
iment to producing a quantum computer. A long photon
lifetime (1 ms) within a cavity allows for coherent dynam-
ics lasting many Rabi floppings [32]. During the waiting
time of a few Rabi floppings, photon losses could spoil the
CV entangled state. The experimental value for the prob-
ability of losing a photon can be small during a waiting
time of only several Rabi floppings. A more realistic model
including the dissipation of the photon and phonon field is
of great interest though the computationally modest goal
will be extremely challenging experimentally [33].

We acknowledges financial support from the National Natural
Science Foundation of China under Grant No. 10374007.
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Appendix

f±
1 = m+(p2

1 + p2
3 − h+

1 ) + 2 sinh(2r)h+
7

± 1
2
{m−[4h8 + cos(Eαt) cos(Eβt)] − 4 sinh(2r)h9},

f±
2 = −m+h+

7 +
1
2

sinh(2r)(h+
2 − p2

2 − p2
4)

+
1
4
i[−m+h+

3 − 2 sinh(2r)h+
4 ]

± 1
4
{−2m−[2h9 + 4h8 − cos(Eαt) cos(Eβt)]

− i[m−h+
5 + 2 sinh(2r)h+

6 ]},
f3 = −2m+h−

7 + sinh(2r)(p2
4 − p2

2 + h−
2 )

− 1
2
i[m+h−

3 + sinh(2r)h−
4 ],

f4 = m+(p2
1 − p2

3 − h−
1 ) + 2 sinh(2r)h−

7

− i[m−h−
6 − sinh(2r)h−

7 ],

h±
1 = p2

2 cos(2Eαt) ± p2
4 cos(2Eβt),

h±
2 = p2

1 cos(2Eαt) ± p2
3 cos(2Eβt),

h±
3 = p2 sin(2Eαt) ± p4 sin(2Eβt),

h±
4 = p1 sin(2Eαt) ± p3 sin(2Eβt),

h±
5 = p2 sin(Eαt) cos(Eβt) ± p4 cos(Eαt) sin Eβt),

h±
6 = p1 sin(Eαt) cos(Eβt) ± p3 cos(Eαt) sin(Eβt),

h±
7 = p1p2 sin2(Eαt) ± p3p4 sin2(Eβt),

h8 = (p1p3 + p2p4) sin(Eαt) sin(Eβt),
h9 = (p2p3 + p1p4) sin(Eαt) sin(Eβt),

m± = 2n̄ + 1 ± cosh(2r), p1 = A2
+ + A2

−,

p2 = 2A+A−, p3 = B2
+ + B2

−, p4 = 2B+B−
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